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1     Introduction 

Although successful realization of the goals of the Strategic 
Defense Initiative will require significant advances in many 
areas of science and engineering, it is now generally ac- 
cepted that computers and their associated software have 
become the "long pole in the tent." SDI software will be 
the most complex ever developed. The operational system 
wil have to run in real-time and be extremely reliable In 
addition, extensive ground-based simulators will be neces- 
sary. 

Parallel processing shows great promise not only for 
meeting the computationally intensive real-time deadlines 
of SDI software, but also for substituting processing power 
for software complexity by allowing the use of simple com- 
pute-intensive algorithms rather than complex optimized 
code The use of parallel processors can also increase the 
reliability of the system by distributing the computing load 

'This work sponsored by the Strategic Defense Initiative Organization 
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-a non-tnvial application was selected to be designed and' 
implemented as a parallel Ada system. The Air Force is 
developing a tracking system which uses a forward look- 
ing infrared sensor together with a tracking algorithm to 
provide target information to a laser pointing system The 
purpose of the tracking algorithm is to detect vehicle move- 
ment m order to keep the target centered in the tracker's 
held of view, simultaneously pointing the laser 

A promising tracking algorithm is being developed at' 
he Air Force Institute of Technology (AFIT) based on 

Kaiman filtering techniques [8,9,10,14]. The heart of this 
tracking system is a Kaiman filter algorithm which pro- 
cesses inputs from measurement devices together with the 
knowledge of applicable device dynamics, statistical de- 
scriptions of noises, measurement errors, modeling uncer- 
tainties, and initial conditions, to produce an optimal esti- 
mate the current and predicted future position of the tar- 
get. The tracker is made even more accurate through the 

T? tlf^iplG m°del adaptive fiIter system (MMAP). 
1 he MMAF is composed of a group of Kaiman filters con- 
structed with varying target characteristic specifications. 
I he outputs from the filters are arbitrated by givine varv 
mg weight to each filter, based upon its predictive ac- 
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. curacy. The result is an estimate more accurate than a 
single filter could provide. However, this increased accu- 
racy comes at a cost of increased computational loading. 
The size and complexity of the algorithm makes it a good 
test case for parallelization. In addition, it is an excellent 
example of the type of ground-based simulation SDI will 
require. 

The system was implemented on an Encore Multimax 
320, a tightly-coupled multiprocessor architecture based 
on the National Semiconductor 32332 processor. The Mul- 
timax 320 at AFIT is configured with 16 processors and 
32 Mbytes of main memory.  The system operates under 
a single copy of UMAX (which is a derivative of UNIX) 

which is accessible by all of the processors simultaneously. 
UMAX implements the concept of multi-threading, allow- 
ing it to support multiple, simultaneous streams of control. 
Interprocess communication occurs through shared mem- 
ory The operating system also supports process migration, 
making dynamic load balancing possible [4]. 

The Encore Ada run-time environment makes true con- 
current Ada possible. Rather than using some single- 
processor interleaving scheme, Encore Concurrent Ada al- 
lows the user to specify the number of independent pro- 
cesses desired. Tasks are then scheduled on a first-come 
first-served basis from a single queue when a process be- 
comes available. Tasks priorities are supported through 
the use of multiple task queues, one for each priority level. 
The user has no explicit control over task allocation or 
scheduling. The processes are assigned to processors by 
the operating system. Tasks are assigned to available pro- - 
cesses by the Ada run-time system [5]. 

The ability to do true concurrent programming in the 
Ada language is relatively new. Many software engineering 
issues in this area still need to be resolved. The purpose of 
this paper is to discuss how we resolved these issues in the 
context of a functional concurrent Ada implementation. 
The issues discussed include: language partitioning, multi- 
tasking design requirements, problem decomposition, and 
a parallel Ada design method. A description of the im- 
plementation and testing methods used is also included. 
The paper concludes with a discussion of project results 
including an analysis of both the design methodology and 
the adequacy of the Ada language for parallel software de- 
velopment. 

2    System Analysis and Design 

2.1     Language Partitioning Strategy 

Despite the fact that the task construct was specifically in- 
cluded in the language to support parallel processing, there 
is some disagreement as to the exact time and method 
that should be used for partitioning Ada programs. There 
are two times in the development process when software 
can be partitioned. The two corresponding strategies are 

known as pre-partitioning and post-partitioning [21]. In 
post-partitioning, after the program is designed and writ- 
ten as if for a single processor, the desired partitioning is 
specified using separate software tools, or is accomplished 
automatically by the distributed operating system. Pre- 
partitioning begins at the very start of the design process. 
A particular construct of the programming language is se- 
lected as the basis of parallelization and used to encapsu- 
late each of the system parts that will run in parallel. 

One advantage claimed for the post-partitioning strat- 
egy is that it promotes portability by allowing the same 
program to be mapped onto different hardware configu- 
rations. Another is that, because the program is written 
to run sequentially, there are no restrictions on how the 
language is used. Finally, it avoids concern that the Ada 
language does not contain facilities for specifying the con- 
figuration of the software over the underlying hardware. 

Automated post-partitioning does not currently exist, 
nor is one likely to be developed in the near future. Man- 
ual post-partitioning is possible using tools such as Hon- 
eywell's Ada Program Partitioning Language [2,3]. This 
language allows the mapping details to be expressed com- 
pletely separate from the program. However, the efficiency 
of the tool remains to be demonstrated. 

Correct use of the Ada language in the pre-partitioning 
strategy can provide the advantages claimed for post-par- 

titioning. Operations that lead to hardware dependency 
in a parallel system, such as task synchronization and dis- 
patching, storage management, and exception handling, 
are handled in Ada by a machine-specific run-time envi- 
ronment and not compiler-generated code As a result, con- 
current software written in Ada can be made portable if 
properly implemented. 

Concern about restrictions on language use in this strat- 
egy are also unfounded. Although Ada code must be: 

encapsulated in the task construct to run concurrently, 
the uniformity of the language reduces the impact on the 
programmer's productivity. For example, task entry calls 
mimic procedure calls and can be used in the same man- 
ner procedure calls would be used in a sequential program. 
Within the task, all operations are available that would be 
available in a corresponding sequential program. There- 
fore, the use of the task construct places no unreasonable 
restrictions on the programmer. 

The lack of configuration facilities in Ada can be over- 
come through the use of data driven design [13]. Rather 
than depending on manual partitioning, which would re- 
quire configuration facilities to schedule and control in- 
dependent tasks, data driven design depends on the run- 
time environment scheduler to control access to processors, 
based on which tasks are ready to run and their relative 
priorities. Because the Ada rendezvous mechanism blocks 
tasks that are awaiting data, the flow of data through 
the system determines which tasks are ready to run. By 
controlling this flow of data, the designer can control the 
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scheduling of tasks without extra-language configuration 
management facilities. 

Data driven design results in minimum processor idle 
time because ready tasks do not have to wait for the start 
of their frame time as in the case of the cyclic executive 
Instead, they are scheduled as soon as a processor is avail- 
able. In addition, data driven designs adapt automatically 

to changes in hardware resources, timing, or processing re- 
quirements because scheduling decisions are made in real- 
time by the run-time system based on the availability of 
data and processing resources.   This method also elimi- 
nates the need for time frames and, therefore, the possibil- 
ity of frame overrun. On the other hand, timing problems 
are still possible if processing requirements outpace avail- 
able processing resources. Because high priority tasks are 
always scheduled first, any timing problems will show up 
in low priority tasks first. The result is a throughput prob- 
lem in the overall system. Since the processor idle time is 
already at a minimum, the only way to solve this problem 
is by increasing processor resources or decreasing compu- 
tational demand. 

Pre-partitioning is the superior strategy for parallel 
design in Ada because it promotes early examination of 
critical design issues and eliminates the overhead of sepa- 
rate partitioning specifications. In addition careful design 
can yield the benefits of the post-partitioning strategy in- 
cluding: portable software, freedom of language use, and 
adequate concurrent process control using the concept of 
concurrent design. 

Given the pre-partitioning strategy and the Ada lan- 
guage, partitioning can occur at four language levels [2 3] 
Because two of these, partitioning on any source program 
construct and extending Ada, require facilities outside of 
those provided by the Ada language, these two methods 
will not be considered here. Of the remaining two meth- 
ods, the first consists of writing a separate program for 
each processor.  This method was commonly used in the 
past because of a lack of language constructs designed 
specifically for parallel processing. It is inefficient and has 
several disadvantages.  First, this approach ties the soft- 
ware closely to the underlying hardware. If the hardware is 
later changed, the software must often be redesigned and 
rewritten.   Any attempt at reallocating functions among 
processors will also require redesign. 

Another problem is that much of the reliability gained 
from the use of high order languages is lost. In Ada 
semantic rules are enforced by the compiler only within 
a program, not across program boundaries. Compilers 
may even generate different internal structures for logi- 
cally identical data types in each of the programs leading 
to hidden problems when data is exchanged between them. 
Finally, communications capabilities in the Ada language 
are strong for passing data within programs, but the only 
facility available for communication between programs is 
inefficient and difficult I/O transfers. 

The other possible alternative is to partition on task 
boundaries by encapsulating the code representing each 
problem fragment within a task. The entire system is con- 
tained within a single program with the task acting as 
the basis for concurrency. This method increases software 
portability, and reallocation of functions within the pro- 
gram can be handled by the run-time environment or with 
only localized changes to the affected task. The fact that 
the whole system is contained within a program allows for 
the full range of semantic checking and makes Ada's exten- 
sive communication capabilities available to the program- 
mer. These advantages make the use of the task construct 
the superior option. 

""ri 

2.2 Multitasking Design Issues 

The use of the task construct as the basis for concurrent 
processing introduces some new design issues. It is gener- 
ally accepted that strong cohesion and loose coupling leads 
to more structured design, easier modification, and higher 
maintainability. The idea of cohesion can be applied to 
tasks, but the coupling concept must account for the in- 
terdependencies that result from concurrent operations. In 
this context, coupling can be considered at two levels. In 

the first case, between subprograms and tasks, coupling 
can be evaluated in the standard way. 

The differences in the concept of coupling during con- 
current operations manifest themselves in the second case, 
task to task interaction.  This is called concurrency cou- 
pling. Tasks are considered tightly coupled if one calls the 
other's entry directly. There are various degrees of tightly " 
coupled tasks.   The tightest occurs during a rendezvous 
where tn out or both in and out parameters are included 
in the call. In this case, the calling task requires a reply 
and the two tasks must remain synchronized for the entire 
period of data transformation. A lessor amount of coupling 
occurs when only in or out parameters are in the call. Here, 
the two tasks are only synchronized long enough for data' 
to be copied from one to the other. A parameterless call 
represents the least amount of coupling.   Tight coupling 
should be avoided whenever possible because periods of 
synchronization eliminate independent operation and thus 
reduce the efficiency of parallel processing. Loose coupling 
is achieved through the use of intermediary tasks between 
the caller and called task pair.   These tasks perform a 
buffering function to ensure that the two main tasks can 
continue processing unhindered by unnecessary synchro- 
nization time. 

Three varieties of intermediary tasks are identified in 
[11]. A buffer tusk is a server only. It contains an entry 
to accept data from a producer and an entry to provide 
data to a consumer upon request. In between producer 
and consumer calls, the data is stored internal to the task 
A transporter is strictly an active task.   It requests data 

468 



via an entry call to the producer task and then outputs 
the data via an entry call to a consumer. A relay task 
is a combination of the two. It waits until called by the 
producer and then immediately calls the consumer. Inter- 
mediary tasks are used in various combinations to achieve 
the desired degree of coupling between producer and con- 

sumer tasks. They are also useful to control caller/called 
relationships, and should be tailored directly to specific de- 
sign requirements. A good concurrent design should have 
a balanced use of intermediary tasks with no cyclic de- 
pendencies and a minimum amount of busy waiting. It 
should also minimize the amount of processing done dur- 
ing a rendezvous (statements within accept blocks) and 
ensure appropriate modes are used for entry parameters. 

The introduction of concurrency into the system and 
the need to reduce task coupling must be balanced against 
the overhead of the resulting tasks. This includes task acti- 
vation, termination, scheduling, dispatching, allocation of 
task control blocks, and, when necessary, context switch- 
ing, exception handling, management of entry queues, and 
rendezvous. The amount of overhead associated with each 
of these operations is dependent on the specific run-time 
system implementation, but it must always be considered. 

2.3    Problem Decomposition 

The first step in any parallel software project is to deter- 
mine how the problem can be decomposed into indepen- 
dent processes. This section describes three methods of 
problem decomposition, using the terminology developed 
in [12]. The three methods are: relaxation, pipelining, and 
partitioning. 

Relaxation consists of dividing processing into indepen- 
dent functions, each of which operates on the same input 
data and performs a complete function. They are not de- 
pendent on data from each other, and no synchronization 
is required between them. This type of decomposition is 
ideal when multiple tasks are being performed at the same 
time, a common occurrence in real-time systems. 

Pipelining consists of dividing the problem into func- 
tions that follow each other sequentially, each performing 
its portion of the computation on data from the one before 

it. Each segment must produce results at the same rate 
or the system will bottleneck at the slowest process. This 
works well for problems where complex operations follow 
each other sequentially over repeating data inputs. 

Partitioning is the third method of decomposition. In- 
stead of each processor performing different computations, 
groups of processors work simultaneously on subparts of 
the same problem. This method differs from the other two 
in that partitioning is done by dividing the problem data 
domain rather than its algorithmic functions. The result of 
the divided data domain is called the grain, and grain size 
has an important effect on the efficiency of the resulting 
code.  Partitioning is most effective for homogeneous op- 

erations performed on large data sets, typically identified 
through iterative structures. The goal is to find the par- 
ticular loop which constitutes the greatest computational 
loading and divide it across the available processors. 

There are three major limiting factors that impact the 
decomposition of a problem and the efficiency of parallel 
software. The first is the computational overhead added 
by parallel software. This overhead comes in one of three 
forms: tasking, communication, and synchronization. 

Tasking overhead consists of the work necessary to per- 
form the tasking functions previously described. It is a 

i function of the number of independent processes in the 
system and the efficiency of the run-time environment. 
Communication overhead is a function of the amount of 
data passed between processes and the communications ef- 
ficiency. It includes the overhead inherent in the program- 
ming language (e.g., in Ada, subprogram invocation, task 
rendezvous, task activation and termination, and data ref- 
erence and modification), and the computational cost and 
time delay incurred by physical message passing. Syn- 
chronization overhead is a function of the number of times 
individual processes must suspend operations to commu- 
nicate with other processes and the amount of time in that 

suspended state. The efficiency of the load balancing has 
the greatest effect on this type of overhead. 

The second limiting factor in parallel speedup is the 
percentage of sequential operations in the problem that 
cannot be parallelized in any manner. These operations 
must be performed on a single processor while others are 
held idle, reducing the efficiency of the overall algorithm. 

The final limiting factor is data contention, when sev- 
eral processors require access to the same global data el- 
ement at the same time. On a shared memory machine, 
processes queue up to obtain the data, resulting in a seri- 
alization of the parallel tasks. On a loosely coupled sys- 
tem, data contention results in increased message passing 
and increases the possibility of multiple copies of the same 
global variable existing in different states. This effect is 

■ called software lockout and must be minimized whenever 
possible. 

The Kaiman filter tracking algorithm was decomposed 
on two levels. Relaxation was used at the highest level to 
separate the individual filters in the Kaiman filter bank 
and to separate the functions of the simulator. At a lower 
level, partitioning was used for some of the complex ma- 
trix operations required by the algorithm including matrix 
multiplication and Cholesky decomposition. These oper- 
ations were often performed on large data sets, justifying 
the added overhead of parallelization. 

2.4    Software Design Methodology 

Parallel programming and the Ada language place certain 
demands on a software design method. The method must 
include a means of describing concurrent processes and 
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the communication between them.   In addition, it must 
support the software engineering features of Ada includ- 
ing packages, generics, and advanced data structures. Fi- 
nally, it should support software pre-partitioning using 

the task construct.    One method specifically developed 
for designing large, real-time distributed systems in Ada 
is the Layered Virtual Machine/Object-Oriented Design 
(LVM/OOD) method [12]. It provides capabilities for de- 
scribing concurrent processes and the communication be- 
tween them and also supports real-time considerations. Its 
basis for concurrent processes is the Ada task, groups of 
which are encapsulated into packages. 

Good software design requires the successful integra- 
tion of algorithms and data structures. Both of these com- 
ponents are of equal importance, but they often raise dif- 
fering concerns. LVM/OOD deals with these concerns by 
combining two design concepts: layered virtual machines 
and object oriented design (OOD). 

Layered virtual machines are abstractions of algorithms 
into independent processes capable of operating in parallel 
These processes are virtual because they are not associated 
with underlying hardware. The run-time environment is 
responsible for the binding of processes to processors. The 
use of layering creates a hierarchical set of modules that 
defer implementation details and support information hid- 
ing. 

OOD is used to abstract problem space objects into 
software data structures and their associated operations. 
Object abstractions can be either object managers which 
encapsulate data structures or type managers which en- 
capsulate definitions that form templates for the creation" " 
of data structures. These managers provide the means for 
describing data and are especially important in data driven 
designs. 

The layered virtual machine and object oriented design 
concepts are combined into an eight step design methodol- 
ogy. The first step is to determine the hardware interfaces 
to the control system, illustrated with a context diagram 
Each hardware device is depicted separately and the inter- 
nal control system is represented as a single entity. High- 

level inputs and outputs are labeled on the interfaces. 
In the second step, each of the external devices, or edge 

functions, is assigned a separate process, a simple device 
driver with the bare minimum of instructions. Third the 
internal controller is decomposed into its primary compo- 
nents using data flow diagrams (DFDs). Complex compo- 
nents can be further decomposed using hierarchical levels 
of DFDs. 

The fourth step is to determine concurrency among the 
controller components, to abstract these components into 
processes that will run independently. Concurrency con- 
siderations will often lead to grouping components into a 
single process. Nielsen and Shumate provide several rules 
to assist ,n this. Functional cohesion suggests that closely 
related functions can be grouped into a single process to re- 

duce overhead. Temporal cohesion collects operations that 
occur during the same time period or after the same event. 
In both cases, significant overhead can often be saved with- 
out appreciable loss of performance. livwiver, some func- 
tions should be left as separate processes.   Time-critical 
components should be implemented as separate processes. 
Periodic functions should not be combined with opera- 
tions that run in differing periods.   Finally, background 
processes should also be separate to preclude interference 
with time-sensitive ones and to provide for the best use of 
excess processor time. 

This fourth step focuses only on the concurrency of 
the high-level components identified in the system DFDs. 
Nielsen and Shumate recommend against having more than 
one level of concurrent tasks, but ignoring lower level parti- 
tioning may forgo performance gains. This research exam- 
ined further decomposition, resulting in several matrix op- 
eration routines that increased overall system paralleliza- 
tion. 

The fifth step is to determine what type of interfaces 
exist between the processes.   These interfaces define the 

communication between the processes and can be one of 
several forms:  messages where a reply from the receivei 
is required, data transfers where no reply Is required, sig- 
nals used to coordinate on the occurrence of certain events, 
and shared data access. The type of communication deter- 
mines the amount of coupling between processes. Messages 
that require replies have the highest coupling followed by 
simple data transfers.   The least coupling is caused by 

„,•_event signals.  Shared data access requires additional at- 
tention and must be protected by some intermediate task 
to provide for mutual exclusion. Once these interfaces are 
identified, processes and their corresponding interfaces are 
depicted using a process structure chart. 

Step six seeks to reduce coupling by introducing inter- 
mediary processes into the design. First, the processes are 
translated into Ada tasks. Between tightly coupled tasks, 
additional tasks are added whose sole purpose is to facili- 
tate communication and thereby decrease coupling. These 
intermediate tasks can be any combination of the three 
types described earlier. The result of this step is the Ada 
task graph. 

Step seven is to encapsulate the tasks into packages. 
At the same time, the objects used for communication be- 
tween the tasks should be abstracted into data objects and 
encapsulated into packages as well. Nielsen and Shumate 
suggest that these be placed in packages to increase mod- 
ularity, portability, and reusability. They also provide sev- 
eral rules for task encapsulation. Tasks should be grouped 
into the same package if they have similar functions or if 
their general nature makes them good candidates for reuse. 
Coupling between packages should be minimized with re- 
spect to data types, operators, and constants by localizing 
these items to the package or group of packages in which 
they are actually used. Finally, the package should rnini- 
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mize the visibility of task entries to that which is essential 
for package interfacing. The products of this step are an 

Ada package graph and the corresponding OOD diagrams 
The final step is the further decomposition of large 

tasks. This may result in another level of concurrency 
which can be depicted using process structure charts and 
Ada task graphs, or it may result in a sequential decompo- 
sition which is described with structure charts. The results 
of this step are shown using OOD diagrams. 

The complete methodology was used to design the Kai- 
man filter tracking system. Interested readers are referred 
to [7] for the results. 

3    System Implementation and 
Testing 

This section describes the process used to implement the 
Kaiman filter tracking system from the design developed 
using LVM/OOD. A top-down approach was used to build 
a skeleton of the system to outline and test system inter- 
faces. These interfaces were used as a basis for a bottom- 
up construction of the final system. Testing was com- 
pletely integrated with the implementation, occurring at 
the end of each phase of the development. 

The first phase of the top-down approach began with 
the coding of the system packages. Global type descrip- 
tions were declared in the package specification of the 
package in which they were first referenced, and simula- 
tion model constants were declared in a master package. 
With these high level data descriptions in place, a skeleton 
of the complete system was developed using the top-level 
tasks. Each task declaration was complete with all of its 
entries and their corresponding parameters. The task bod- 
ies were coded as shells containing only the entry calls and 
accept blocks from the final implementation. An output 
statement was included before and after each entry call 
and accept block describing the current state of the task. 

All variables local to the task bodies were declared and 
those used for communication parameters were initialized 
to zero. 

Once the coding was complete, the skeleton was com- 
piled using the already established order of compilation 
based on the package dependencies identified in the de- 
sign. This provided a first check of package dependence, 
Checked the actual parameters in the entry calls against 
the formal parameters in the accept statements, and indi- 
cated any improper parameter modes. 

Once compiled, the skeleton system was executed on a 
single processor. This caused the elaboration of all of the 
task and object declarations and activation of all the tasks. 
It also checked the system for possible deadlock conditions. 
Although no data was processed or passed, all rendezvous 
took place and were documented by the output of the task 
state descriptions.   The resulting record of system oper- 

ation provided clues as to the state of the system at the 
point at which deadlock occurred. This information was 
useful in reordering entry calls to eliminate the deadlock 

problem. 
Despite the usefulness of the system state output tech- 

nique, it does have limitations. There is no guarantee of 
what an output device driver will do when a concurrent 
system deadlocks. Messages may be lost and the resulting 
state record may not be complete. Even a deadlock-free 
system at this point does not guarantee continued cor- 
rect operation once the skeleton has been filled in with all 
the required'processing. Because of the non-deterministic 
nature of the tasking model, additional processing load 
may lead to a different task scheduling order which may 
present opportunities for deadlock that did not exist in the 
skeleton. Only careful analysis of the system design and. 
the results of tests can lead to a dead-lock free system. 
Nonetheless, until better tools for following tasking flow of 
control are made available, the system state description log 

is one of the best methods of finding concurrent software 
communication errors. 

The second stage of the top-down part of the devel-1 

opment involved adding the subprogram specifications to 
their package specifications and subprogram stubs to the 
corresponding package bodies, and recompiling. Package 
dependencies were checked again, and the formal and ac- 
tual parameters in the subprogram specifications and calls 
were compared for type mismatches. The skeleton system 
was executed again to force elaboration of the subprogram 
local variables. 

The completed skeleton provided a framework for fur- 
ther development by documenting the interfaces between 
the high-level processes. This knowledge formed a basis 
for further development of the system from the bottom 
up. The first step was the coding of several reusable ma- 
trix operation routines. Because these operated on large 
matrices, they were parallelized to provide better response 
times. A single, shared copy of the data was used to 
eliminate rendezvous overhead, and the number of tasks 
spawned to complete the operation was varied dynami- 
cally,! based on the size of the particular matrix. 

Using the matrix routines as atomic operations, the 
rest of the system was developed from the lowest level 
subroutines upward. Difficulties in debugging were caused 
by the fact that the Encore run-time system would not 
propagate unhandled exceptions out of tasks. When an 
error occurred within a task without an exception handler, 
the run- time system would simply hang without an error 
message. Often this required moving the code to another' 
development environment in order to determine the error. 
The portability of Ada was a real advantage here, as the 
entire Kaiman filter tracking system could be ported with- 
minimal changes to the code. 
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4    Conclusions 

One objective of this research was to examine the soft- 
ware engineering issues surrounding the use of Ada for 
concurrent software systems. The implementation of the 
Kaiman filter tracking system proved that the task is a 
viable construct for parallel process partitioning. In ad- 
dition, it proved that careful problem decomposition will 
result in more than adequate computational load to out- 
weigh the inherent overhead of the tasking model and the 
Ada run-time system. The use of intermediary processes 
proved very useful in reducing synchronization overhead 
and, thereby, increasing the parallel efficiency of the sys- 
tem. 

Nielsen and Shumate's [12] design methodology proved 
to be an effective means of documenting a parallel Ada de- 
sign. It provides good rule-based decision making support 
at both the system and detailed design levels. The graphi- 
cal tools are adequate to describe the state of the system at 
each stage of development, and each level of problem ab- 
straction is supported. The method does tend to be more 
functionally oriented in some stages (neglecting the 00D 
portion of the methodology), and it was supplemented in 
those areas by material from [1]. 

Two major areas of difficulty were encountered in the 
design phase of the project. The first was the discovery in 
the implementation phase that the one part of the algo- 
rithm was a significant roadblock to parallel speed-up with 
the tracking system. Although some problem was expected 
based on the results of the initial decomposition, the mag- 
nitude of the bottleneck was unexpected. Clearly, it would 
have been better to recognize the severity of the problem 
earlier in the design process or even in the initial anal- 
ysis. While the factors limiting decomposition efficiency 
were discussed early in the guidelines, no real method was 
available for discovering the relative magnitude of these 
factors. 

In a parallel environment, such a method cannot be 
based solely on standard algorithmic complexity analy- 
sis. It must include knowledge of actual module execution 
speeds and actual time delays for task allocation, schedul- 
ing, and communication. Whether such information could 
be determined during analysis and design, without some 
degree of code test cases, is uncertain. Also, the avail- 
ability of such information presupposes knowledge of the 
specific implementation hardware which may not be avail- 
able in the early stages of the design. The form of such a 
complexity analysis method, as well as where in the devel- 
opment cycle it should fit, are areas which require further 
study. 

A second limitation to the guidelines was the lack of 
a method for specifying independent process run-time in- 
teraction graphically. This would have been very help- 
ful in identifying possible deadlock situations and would 
have provided a means of showing data dependency among 

tasks which would have helped in analyzing task coupling. 
A very complex problem, involving many layers of tasks,! 
would be impossible to comprehend without some graph-1 

ical display of task interaction. An automated graphics 
tool would be very helpful in this area. 

The second objective of this effort was to determine 
the adequacy of the Ada language for parallel software 
development through the implementation of a real-world 
problem. The implementation of the Kaiman filter track- 
ing system highlighted a very important distinction be- 
tween the adequacy of the language itself (as described by 
MIL-STD 1815A) and the adequacy of the tools (compil- 
ers, debuggers, run-time systems, etc) currently available 
to support it. 

The Ada language proved to be an excellent means 
of abstracting a parallel problem. The task construct is 
ideal for encapsulating independent processes, while the 

rendezvous provides the means for both task synchroniza- 
tion and communication without resorting to machine de- 
pendent parallel language constructs. The ability to dy- 
namically spawn tasks was useful as a load balancing tool. 
It made it possible for a generalized routine to vary the 
number of tasks spawned based on the size of the particu- 
lar data structure being operated on. 

Aside from the task construct, other features of the 
language made implementation more productive as well. 
The use of the package construct greatly assisted in mod- 
ular development. The use of generics and unconstrained 
arrays made it possible to construct general support rou- 
tines capable of operating on a wide range of data forms. 
Finally, the standardization of the language was itself an 
advantage. Because of the difficulties encountered with 
the debugging tools, four different Ada environments res- 
ident on four different hardware architectures were used 
during the development process. The use of Ada made 
it possible to move modules of code freely between these 
environments on a frequent basis with a bare minimum of 
changes. 

While the Ada language provided ideal support for the 
implementation of the system, the tools available to sup- 
port it still have a great deal of maturing to do. Although 
the compiler used on the Encore was validated, it soon be- 
came obvious that development in a parallel environment 
is as dependent on the correct operation of the run-time 
system as it is on the compiler generating valid executable 
code. Several problems were encountered with the Encore 
run-time system in the areas of stack checking, exception 
propagation, and task allocation. 

Because the Ada language standard does not cover run- 
time system implementation, there is no validation capa- 
bility available for run-time system operation. Therefore, ' 
as was the case with previous languages, the user is de- 
pendent on vender testing to ensure a valid system. A 
method of central validation was one of the major reasons 
Ada was developed, and serious consideration should be 
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given to adding run-time system standards to the current 
language standard. 

The development tools available for this project were 
also inadequate. The compilers used were slow, especially 
toward the end of the project when long lists of depen- 
dent packages had to be recompiled because of minor code 
changes. The symbolic debugger was next to useless in 
a multitasking environment and did not support concur- 
rent multitasking at all. There were also no tools available 
to monitor the execution of the parallel processes, making 
task analysis very difficult. Finally, the documentation 
available on the concurrent aspects of the run-time system 
was very sparse. 

Parallel processing and the Ada language do hold great 
promise for developing complex real-time and ground-based 
systems. The successful implementation of this project 
proves that concurrent Ada is a reality and provides a 
number of advantages not found in other languages. How- 
ever, much research remains to be done in this area. Soft- 
ware engineering methods must be updated to meet the 
new challenges of concurrent Ada development. Also, ad- 
vances are needed in Ada tools and automated parallel 
design tools before any software project the size of that 
required by SDI can be attempted. 
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